GOLUBEV SERIES FOR SOLUTIONS OF ELLIPTIC EQUATIONS

CH. DORSCHFELDT AND N. N. TARKHANOV

ABSTRACT. Let P be an elliptic system with real analytic coefficients on an open set $X \subset \mathbb{R}^n$, and let Φ be a fundamental solution of P. Given a locally connected closed set $\sigma \subset X$, we fix some massive measure m on σ . Here, a non-negative measure m is called massive, if the conditions $s \subset \sigma$ and m(s) = 0 imply that $\overline{\sigma \setminus s} = \sigma$. We prove that, if f is a solution of the equation Pf = 0 in $X \setminus \sigma$, then for each relatively compact open subset U of X and every $1 there exist a solution <math>f_e$ of the equation in U and a sequence f_{α} ($\alpha \in \mathbb{N}_0^n$) in $L^p(\sigma \cap U, m)$ satisfying $\|\alpha! f_{\alpha}\|_{L^p(\sigma \cap U, m)}^{1/|\alpha|} \to 0$ such that $f(x) = f_e(x) + \sum_{\alpha} \int_{\sigma \cap U} D_y^{\alpha} \Phi(x, y) f_{\alpha}(y) dm(y)$ for $x \in U \setminus \sigma$. This complements an earlier result of the second author on representation of solutions outside a compact subset of X.

1. Introduction and statement of the main results

1.1. Let P be a $(k \times k)$ -matrix of scalar partial differential operators with real analytic coefficients on an open set $X \subset \mathbb{R}^n$. Suppose further that P has a fundamental solution Φ which is real analytic outside the diagonal Δ of $X \times X$. By definition, $\Phi(x,y)$ is a $(k \times k)$ -matrix of distributions on $X \times X$ satisfying

$$\begin{cases} P(x, D_x) \Phi(x, y) = \delta(x - y) I_k, \\ P'(y, D_y) \Phi(x, y) = \delta(x - y) I_k \end{cases}$$

where P' is the transposed operator to P, and I_k is the identity $(k \times k)$ -matrix.

Recall that, according to a theorem of Malgrange, every elliptic differential operator with real analytic coefficients on X has a fundamental solution with the desired properties.

1.2. If U is an open subset of X, then denote by $S_P(U)$ the vector space of all weak solutions of the system Pf=0 on U. Note that because of the analytic hypoellipticity of P, the solutions in $S_P(U)$ are actually real analytic functions in U. For a closed subset σ of X, solutions $f \in S_P(X \setminus \sigma)$ will be said to have singularities on σ .

In this article, we are interested in representations of solutions of the equation Pf = 0 in X having singularities on a closed subset σ of X. Before stating our principal result, we must first introduce one technical definition.

A (nonnegative) measure m on σ is said to be *massive*, if the two conditions $s \subset \sigma$ and m(s) = 0 imply that $\overline{\sigma \setminus s} = \sigma$. In other words, every subset of σ of

Received by the editors February 15, 1995 and, in revised form, November 20, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35A20, 35C10.

 $Key\ words\ and\ phrases.$ Solutions with singularities, real analytic coefficients, elliptic systems, Golubev series.

This research was supported in part by the Alexander von Humboldt Foundation.

m-measure zero has empty interior. As the following example shows, a massive measure exists on every closed set σ .

Example 1.1. Let $\{y_j\}_{j\in\mathbb{N}}$ be a sequence of points of K, which is dense as a set in σ . Choose a sequence of positive numbers $\{\mu_j\}$ such that $\sum \mu_j < \infty$. For a set $s \subset \sigma$, we define $m(s) = \sum_{y_{\nu} \in s} \mu_{\nu}$. Then m is a massive measure on σ .

Let us fix some massive measure m on σ . Our main result is the following:

Theorem 1.1. Assume that K is a locally connected compact subset of σ , and $1 . Then for each solution <math>f \in S_P(X \setminus \sigma)$ there exist both a solution $f_e \in S_P((X \setminus \sigma) \cup \overset{\circ}{K})$ and a sequence $\{c_\alpha\}_{\alpha \in \mathbb{N}_0^n} \subseteq [L^p(K,m)]^k$ such that

(1)
$$f(x) = f_e(x) + \sum_{\alpha \in \mathbb{N}_0^n} \int_K D_y^{\alpha} \Phi(x, y) c_{\alpha}(y) dm(y)$$

holds for all $x \in X \setminus \sigma$. Furthermore, $\|\alpha! c_{\alpha}\|_{L^{p}(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$.

We emphasize that $\overset{\circ}{K}$ is the interior of K on σ , i.e., in the induced topology of σ .

1.3. For holomorphic functions of one variable (i.e. for the operator $P = \partial/\partial \overline{z}$ in \mathbb{C}^1), for compact σ and p=2, Theorem 1.1 is due to Havin [7]. Havin called the corresponding representation of the form (1) Golubev-series, since it was V.V. Golubev who posed the question whether such a formula held for every function analytic in $\hat{\mathbb{C}} \setminus K$ when K is a rectifiable simple arc and m the Lebesgue measure on K. For further details on the history of the problem cf. Havin [8]. More generally, we call representations of the form (1) Golubev-series expansions for solutions with singularities.

Baernstein [1] proved an analogous representation formula for functions holomorphic off the real axis. Using complex analysis and Hilbert space methods, the second author [15] showed Theorem 1.1 for the case of compact σ and p=2 (see also [16]). Simonova [13] obtained an analogous representation theorem for functions harmonic off a hyperplane. Fischer and Tarkhanov [4] constructed a Golubev-series expansion for solutions of homogeneous elliptic systems with constant coefficients in \mathbb{R}^n , having singularities on a plane of a smaller dimension. They also derived Theorem 1.1 for the case of smooth σ and asked whether a result as formulated in Theorem 1.1 held for arbitrary locally connected sets σ .

The local connectedness of the compact set K we look at is a very delicate point in the literature. In fact it is related to the problem of extension of analytic functions on a neighborhood of K. (See Havin [8], Varfolomeev [17] and Rogers/Zame [12].)

In this paper, we prove the result by generalizing the ideas used in [15] in an appropriate way. Since the article [15] is in Russian and does not seem to be easily available, we have decided to present the paper in a self-contained way and do not use [15] as a reference.

1.4. The converse statement to Theorem 1.1 is quite easy to prove.

Lemma 1.1. Let K be a relatively compact subset of σ , and $1 \leq p < \infty$. For every sequence $\{c_{\alpha}\}_{\alpha \in \mathbb{N}_{0}^{n}} \subset [L^{p}(K,m)]^{k}$, satisfying $\|\alpha!c_{\alpha}\|_{L^{p}(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$, the series $\sum_{\alpha} \int_{K} D_{y}^{\alpha} \Phi(x,y)c_{\alpha}(y)dm(y)$ converges for $x \in X \setminus K$ and defines an element in $S_{P}(X \setminus K)$.

Proof. First note that for $x \in X \setminus K$ we have

$$P(x,D)\int_K D_y^{\alpha}\Phi(x,y)c_{\alpha}(y)dm = \int_K D_y^{\alpha}\{P(x,D)\Phi(x,y)\}c_{\alpha}(y)dm = 0.$$

Thus the proof will be complete if we show that the series we look at converges uniformly on compact subsets of $X \setminus K$. It is well-known that a C^{∞} function g on an open set $U \subset \mathbb{R}^n$ is real analytic if and only if for every compact set $K \subset U$ there are constants a = a(g, K) and c = c(g, K) such that

$$\sup_{y \in K} |D^{\alpha} g(y)| \le c \cdot a^{|\alpha|} |\alpha|! \text{ for all } \alpha \in \mathbb{N}_0^n.$$

Now fix a compact set $\tilde{K} \subset\subset X\setminus K$. Since the fundamental solution Φ is real analytic in a neighborhood of $\tilde{K}\times K$, there exist constants a and c, depending on Φ and \tilde{K} , such that

(2)
$$\sup_{(x,y)\in \tilde{K}\times K} \|D_y^{\alpha}\Phi(x,y)\| \le c \cdot a^{|\alpha|} |\alpha|! \text{ for all } \alpha \in \mathbb{N}_0^n.$$

Using (2), for $\alpha \in \mathbb{N}_0^n$ we get

$$\sup_{x \in \tilde{K}} \left| \int_{K} D_{y}^{\alpha} \Phi(x, y) c_{\alpha}(y) dm(y) \right| \leq c \cdot a^{|\alpha|} |\alpha|! \int_{K} |c_{\alpha}(y)| dm(y)$$

$$\leq c \cdot a^{|\alpha|} |\alpha|! \|c_{\alpha}\|_{L^{p}(K, m)} m(K)^{\frac{1}{q}},$$

with $p^{-1} + q^{-1} = 1$. Therefore

$$\sum_{\alpha \in \mathbb{N}_0^n} \sup_{x \in \tilde{K}} \left| \int_K D_y^{\alpha} \Phi(x, y) c_{\alpha}(y) dm \right| \leq c \cdot m(K)^{1/q} \sum_{\alpha \in \mathbb{N}_0^n} a^{|\alpha|} |\alpha|! \|c_{\alpha}\|_{L^p(K, m)}$$

$$= c \cdot m(K)^{1/q} \sum_{j=0}^{\infty} a^j \sup_{|\alpha|=j} \|\alpha! c_{\alpha}\|_{L^p(K, m)} \left(\sum_{|\alpha|=j} \frac{|\alpha|!}{\alpha!} \right)$$

$$= c \cdot m(K)^{1/q} \sum_{j=0}^{\infty} (a \cdot n \sup_{|\alpha|=j} \|\alpha! c_{\alpha}\|_{L^p(K, m)}^{1/|\alpha|})^j,$$

where we used that $\sum_{|\alpha|=j} \frac{|\alpha|!}{\alpha!} = n^j$, $n = \dim \mathbb{R}^n$.

Now, since $\sup_{|\alpha|=j} \|\alpha! c_{\alpha}\|_{L^{p}(K,m)}^{1/|\alpha|} \to 0$ when $j \to \infty$, the last sum can be majorized by a geometric sum. Hence

$$\sum_{\alpha \in \mathbb{N}_0^n} \sup_{x \in \tilde{K}} \left| \int_K D_y^{\alpha} \Phi(x, y) c_{\alpha}(y) dm \right| \le c(K, \tilde{K}) < \infty.$$

1.5. Let us distinguish the principal difficulty in the proof of Theorem 1.1.

Lemma 1.2. Let K be a locally connected compact subset of X, m be a massive measure on K and $1 . Then for every solution <math>f \in S_P(X \setminus K)$ there are a solution $f_e \in S_P(X)$ and a sequence $\{c_\alpha\}_{\alpha \in \mathbb{N}_0^n} \subset [L^p(K,m)]^k$ such that

$$f(x) = f_e(x) + \sum_{\alpha \in \mathbb{N}_n^{\alpha}} \int_K D_y^{\alpha} \Phi(x, y) c_{\alpha}(y) dm(y)$$

holds for all $x \in X \setminus K$. Furthermore, $\|\alpha! c_{\alpha}\|_{L^{p}(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$.

As Baernstein showed in [2], even for $P = \partial/\partial \overline{z}$ Lemma 1.2 is false for arbitrary compact K.

We now turn to the

Proof (of Theorem 1.1). Let $U\subset X$ be a relatively compact open set such that $U\cap\sigma=\overset{\circ}K$ and the set $K'=\partial U\cup\overset{\circ}K$ is locally connected. Fix some massive measure m' on K' whose restriction to K is m. The existence of such a measure follows from Example 1.1. Given a solution $f\in S_P(X\setminus\sigma)$, we consider the function f' which equals f in $U\setminus\sigma$ and is 0 in $X\setminus\overline{U}$. Then f' is a solution of the system Pf'=0 with singularities on K'. Hence by Lemma 1.2 there exist a solution $f'_e\in S_P(X)$ and a sequence $\{c'_\alpha\}_{\alpha\in\mathbb{N}_0^n}\subset [L^p(K',m')]^k$, satisfying $\|\alpha!c'_\alpha\|_{L^p(K',m')}^{1/|\alpha|}\to 0$ when $|\alpha|\to\infty$, such that

$$f'(x) = f'_e(x) + \sum_{\alpha \in \mathbb{N}_n^n} \int_{K'} D_x^{\alpha} \Phi(x, y) c'_{\alpha}(y) dm'(y) \quad (x \in X \setminus K').$$

Set $c_{\alpha} := c'_{\alpha} \mid_{K}, \ \alpha \in \mathbb{N}_{0}^{n}$. Since $\|\alpha! c_{\alpha}\|_{L^{p}(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$, the function f_{e} defined by

$$f_e(x) = f(x) - \sum_{\alpha \in \mathbb{N}_0^n} \int_K D_x^{\alpha} \Phi(x, y) c_{\alpha}(y) dm(y) \quad (x \in X \setminus \sigma)$$

belongs to $S_P(X \setminus \sigma)$ because of Lemma 1.1. Moreover, this function satisfies the equation $Pf_e = 0$ also in a neighborhood of each interior point of K, since we have

$$f_e(x) = f'_e(x) + \sum_{\alpha \in \mathbb{N}_0^n} \int_{K' \setminus K} D_x^{\alpha} \Phi(x, y) c'_{\alpha}(y) dm'(y) \text{ for } x \in U \setminus \sigma.$$

Thus
$$f_e \in S_P((X \setminus \sigma) \cup \overset{\circ}{K})$$
, as was to be proved.

The proof of Lemma 1.2 needs some preparation which we give in the following section by studying more thoroughly the topology on $S_{P'}(K)$. For the sake of simplicity, we restrict the following considerations to the case k = 1.

2. Equivalent topologies in $S_{P'}(K)$

2.1. Let K be any compact set in X. In this section, we study various topologies on $S_{P'}(K)$, where P' is the transposed operator to P. Define the space $S_{P'}(K)$ as follows. The function g belongs to $S_{P'}(K)$ if there exists an open set $U \supset K$ such that g is a solution of the equation P'g = 0 in U. If two such functions agree on some neighborhood of K, we identify them as elements in $S_{P'}(K)$.

For each U as above, let $S_{P'}(U)$ denote the space of solutions of the equation P'g = 0 in U with the topology of uniform convergence on compact subsets, i.e., the topology induced from C(U). There is a natural map from $S_{P'}(U)$ into $S_{P'}(K)$, and we endow $S_{P'}(K)$ with the finest locally convex topology for which all these maps are continuous. We denote this topology by τ . Alternatively, the space $(S_{P'}(K), \tau)$ can be described as the inductive limit of the spaces $S_{P'}(U_{\nu})$, where $\{U_{\nu}\}$ is any decreasing sequence of open sets containing K such that each neighborhood of K contains some U_{ν} , and such that each component of each U_{ν} meets $U_{\nu+1}$.

Remark 2.1. The space $(S_{P'}(K), \tau)$ is separated, a subset of this space is bounded iff it is contained and bounded in some $S_{P'}(U_{\nu})$, and each closed bounded subset is compact. Proofs could be given by the same methods as in Koethe [9], p.379.

2.2. We will embed $S_{P'}(K)$ algebraically in a space $L^{(q)}$ whose topological dual consists of sequences of functions from $L^p(K, m)$. Lemma 1.2 follows from the Hahn-Banach Theorem once we show that the topology of $L^{(q)}$ restricted to $S_{P'}(K)$ is finer than the topology τ . To do this, we have first to study some Banach spaces.

Definition 2.1. Given positive numbers q and r, the space $l^q(r)$ is defined to

consist of all sequences $\{\eta_{\alpha}\}_{\alpha\in\mathbb{N}_0^n}\subseteq\mathbb{C}$ with $(\sum_{\alpha\in\mathbb{N}_0^k}|\eta_{\alpha}|^qr^{|\alpha|q})^{1/q}<\infty$. If K is an arbitrary compact subset of X and m is an arbitrary measure on K, then we denote by $l^q(r)^K$ the space of all functions $\eta(\cdot) = \{\eta_\alpha(\cdot)\}_{\alpha \in \mathbb{N}_0^n}$ on K with values in $l^q(r)$ such that $\eta_{\alpha}(\cdot) \in L^q(K,m)$ for every $\alpha \in \mathbb{N}_0^n$ and

$$\left(\sum_{\alpha \in \mathbb{N}_0^n} \|\eta_\alpha\|_{L^q(K,m)}^q r^{q|\alpha|}\right)^{1/q} < \infty.$$

Lemma 2.1. For $q \in [1, \infty]$, the functional

(1)
$$\|\{\eta_{\alpha}\}\|_{l^{q}(r)^{K}} = \left(\sum_{\alpha \in \mathbb{N}_{0}^{n}} \|\eta_{\alpha}\|_{L^{q}(K,m)}^{q} r^{q|\alpha|}\right)^{1/q}$$

defines a norm on $l^p(r)^K$.

Proof. The proof is an easy exercise from functional analysis.

Equipped with the norm (1), the space $l^q(r)^K$ is a Banach space, provided $q \in$ $[1,\infty]$. Instead of proving this directly, we proceed by the following

Lemma 2.2. Let $r > 0, q \ge 1$ be arbitrary real numbers, and let $p \in]1, \infty]$ be the conjugate exponent to q. We have an isometrical isomorphism

$$(l^q(r)^K)' \cong l^p(\frac{1}{r})^K.$$

Proof. Assume that q > 1. Fix some $\theta = \{\theta_{\alpha}\}_{{\alpha} \in \mathbb{N}_0^n} \in l^p(\frac{1}{r})^K$. Then θ defines a linear functional on $l^q(r)^K$ via $\langle \theta, \eta \rangle = \sum_{{\alpha} \in \mathbb{N}_0^n} \int_K \langle \theta_{\alpha}(y), \eta_{\alpha}(y) \rangle dm(y)$, for $\eta = 1$ $\{\eta_{\alpha}\}\in l^q(r)^K$. Since

(2)
$$|\langle \theta, \eta \rangle| \leq \sum_{\alpha \in \mathbb{N}_0^n} (\|\theta_\alpha\|_{L^p(K, m)} r^{-|\alpha|}) (\|\eta_\alpha\|_{L^q(K, m)} r^{|\alpha|})$$

$$\leq \|\theta\|_{l^p(\frac{1}{\alpha})^K} \cdot \|\eta\|_{l^q(r)^K},$$

this functional is continuous. Conversely, let $F \in (l^q(r)^K)'$. Given a multi-index $\alpha \in$ \mathbb{N}_0^n , denote by e_α the element in $l^q(r)$ which is 1 in the α -th entry and 0 in all other entries. On $L^q(K, m)$, we may define a functional by juxtaposition $g \longmapsto F(ge_\alpha)$ for $g \in L^q(K,m)$. Since F is continuous, this functional is continuous, too. By duality, there is a function $\theta_{\alpha} \in L^{p}(K, m)$ such that $F(ge_{\alpha}) = \int_{K} \langle \theta_{\alpha}(y), g(y) \rangle dm(y)$ for all $g \in L^{q}(K, m)$. Since for an element $\eta = \{\eta_{\alpha}\}$ in $l^{q}(r)^{K}$ we have $\eta = \sum_{\alpha \in \mathbb{N}_{0}^{n}} \eta_{\alpha} e_{\alpha}$ and the series converges in the norm of $l^q(r)^K$, it follows that

$$F(\eta) = \sum_{\alpha \in \mathbb{N}_0^n} F(\eta_{\alpha} e_{\alpha}) = \sum_{\alpha \in \mathbb{N}_0^n} \int_K \langle \theta_{\alpha}(y), \eta_{\alpha}(y) \rangle dm(y).$$

Put $\theta := \{\theta_{\alpha}\}_{{\alpha} \in \mathbb{N}_0^n}$. To complete the proof, it remains to show that θ is in $l^p(\frac{1}{r})^K$. To this end, we consider the sequence $\{\eta_{\alpha}\}_{{\alpha} \in \mathbb{N}_0^n}$ of measurable functions on K given by

$$\eta_{\alpha} := \left\{ \begin{array}{ll} |\theta_{\alpha}|^{p-2} \overline{\theta}_{\alpha} r^{-p|\alpha|}, & \theta_{\alpha} \neq 0, \\ 0, & \theta_{\alpha} = 0. \end{array} \right.$$

Since $|\eta_{\alpha}|^q = |\theta_{\alpha}|^p r^{-pq|\alpha|}$ each function $\eta_{\alpha}(\cdot)$ is in $L^q(K,m)$. Hence it follows

$$\sum_{|\alpha| \le N} \|\theta_{\alpha}\|_{L^{p}(K,m)}^{p} (\frac{1}{r})^{p|\alpha|} = |F(\sum_{|\alpha| \le N} \eta_{\alpha} e_{\alpha})| \le \|F\|_{(l^{q}(r)^{K})'} \|\sum_{|\alpha| \le N} \eta_{\alpha} e_{\alpha}\|_{l^{q}(r)^{K}}$$
$$= \|F\|_{(l^{q}(r)^{K})'} (\sum_{|\alpha| \le N} r^{-p|\alpha|} \|\theta_{\alpha}\|_{L^{p}(K,m)}^{p})^{1/q}.$$

Thus $(\sum_{|\alpha| \leq N} r^{-p|\alpha|} \|\theta_{\alpha}\|_{L^{p}(K,m)}^{p})^{1/p} \leq \|F\|_{(l^{q}(r)^{K})'}$ for every positive integer N. Together with (2) it follows that

$$\|\theta\|_{l^p(\frac{1}{r})^K} = \|F\|_{(l^q(r)^K)'},$$

as was to be proved.

For q=1, the proof follows the same lines with the obvious modifications. \Box

Since the dual space to a normed space is a Banach space, Lemma 2.2 implies the following

Corollary 2.1. Let r > 0 and q > 1. Then $l^q(r)^K$ is a reflexive Banach space.

2.3. Note that if r' > r'' > 0, we have a continuous embedding $l^q(r')^K \hookrightarrow l^q(r'')^K$. Now let $\{r_\nu\}_{\nu\in\mathbb{N}}$ be some decreasing sequence of positive numbers tending to zero. The space $L^{(q)}$ is defined to be the inductive limit of the spaces $l^q(r_\nu)^K$. The space $L^{(q)}$ is separated. Each bounded set is contained and bounded in one of the $l^q(r_\nu)^K$. Moreover, $L^{(q)}$ is a (DF)-space, because it is the separated inductive limit of a sequence of normed, hence (DF)-, spaces (see Théorème 9 of Grothendieck [6]).

Our aim is to show that $S_{P'}(K)$ is topologically isomorphic to a subspace of $L^{(q)}$. Thus we proceed by constructing an embedding $S_{P'}(K) \hookrightarrow L^{(q)}$. More precisely, for each solution $g \in S_{P'}(K)$ we define

(3)
$$j(g) := \left\{ \frac{D^{\alpha}g}{\alpha!} \mid_{K} \right\}_{\alpha \in \mathbb{N}_{0}^{n}}.$$

Lemma 2.3. For every $g \in S_{P'}(K)$, the sequence j(g) is in $L^{(q)}$, and the mapping $j: S_{P'}(K) \to L^{(q)}$ is continuous and injective.

Proof. Let $g \in S_{P'}(K)$. Then there is a neighborhood U of K in X such that $g \in S_{P'}(U)$. Now choose a function $\varphi \in \mathcal{D}(X)$ which is equal to 1 in a neighborhood of K. Since Φ is a left fundamental solution of P, we get $g = \Phi'P'(\varphi g)$ in a neighborhood of K.

The function $P'(\varphi g)$ is supported by the closure of the set of those points $x \in U$ such that $\operatorname{grad} \varphi(x) \neq 0$. Let us denote this closure by σ . Then σ is a compact subset of $U \setminus K$, so there is a function $\psi \in \mathcal{D}(U \setminus K)$ which equals 1 in a neighborhood of σ .

Since $P'(\varphi g) = \psi P'(\varphi g)$, we have $g = \Phi'(\psi P'(\varphi g))$ in a neighborhood of K. Hence it follows for each multi-index α that

$$D^{\alpha}g(y) = \int P(x, D)(\psi(x)D_{y}^{\alpha}\Phi(x, y)) \cdot (\varphi(x)g(x))dx \quad (y \in K).$$

Using estimate (2) with $\tilde{K} = \text{supp } \psi$, we get

$$\begin{split} \sup_{y \in K} |D^{\alpha} g(y)| & \leq & c' a^{|\alpha| + \operatorname{order} P} (|\alpha| + \operatorname{order} P)! \sup_{x \in \operatorname{supp} \varphi} |g(x)| \\ & \leq & c'' (a')^{|\alpha|} |\alpha|! \sup_{x \in \operatorname{supp} \varphi} |g(x)|, \end{split}$$

where a' is any number larger than a, and the constant c'' does not depend on $g \in S_{P'}(U)$ and α . It now follows that

(4)

$$\begin{split} \sum_{\alpha \in \mathbb{N}_0^n} \| \frac{D^{\alpha} g}{\alpha!} \|_{L^q(K,m)}^q r_{\nu}^{q|\alpha|} &\leq (c'')^q m(K) (\sum_{\alpha \in \mathbb{N}_0^n} ((a')^{|\alpha|} r_{\nu}^{|\alpha|} \frac{|\alpha|!}{\alpha!})^q) \sup_{x \in \operatorname{supp} \varphi} |g(x)| \\ &= (c'')^q m(K) (\sum_{j=0}^{\infty} (na' r_{\nu})^{qj}) \sup_{x \in \operatorname{supp} \varphi} |g(x)|. \end{split}$$

Choose ν_0 large enough, such that $nar_{\nu_0} < 1$. Then (4) shows that $j(g) \in l^q(r_{\nu_0})^K$ as well as the continuity of the mapping $j: S_{P'}(U) \longrightarrow l^q(r_{\nu_0})^K$.

Since a linear operator from $S_{P'}(K)$ into a locally convex space is continuous if and only if its restriction to each $S_{P'}(U)$ is continuous (for a proof cf. Bourbaki [3]), it follows that the mapping $j: S_{P'}(K) \longrightarrow L^{(q)}$ is continuous.

To show that j is injective let $g \in S_{P'}(K)$ be such that j(g) = 0. This means that $D^{\alpha}g|_{K} \equiv 0$ in K for all $\alpha \in \mathbb{N}_{0}^{n}$, and hence, since g is real analytic, it follows $g \equiv 0$ in a neighborhood of K.

2.4. Now put

$$S_{P'}^{(q)} := j(S_{P'}(K)) \subseteq L^{(q)}.$$

We endow this space with the topology induced by $L^{(q)}$. We want to show

Lemma 2.4. Let K be a locally connected compact subset of X, and q > 1. Then $S_{P'}^{(q)}$ is a closed subspace of $L^{(q)}$.

For the proof of Lemma 2.4 we shall use the following result:

Lemma 2.5. Assume that $\{L_{\nu}\}$ is a sequence of reflexive Banach spaces, such that L_{ν} is continuously embedded in $L_{\nu+1}$ for all ν , and L is the inductive limit of the sequence. Then a vector subspace Σ of L is closed if and only if for all ν the intersection $\Sigma \cap L_{\nu}$ is closed in L_{ν} .

Proof (of Lemma 2.4). Using Lemma 2.5 it is sufficient to show that for each ν the subspace $S_{P'}^{(q)} \cap (l^q(r_{\nu})^K)$ is closed in $l^q(r_{\nu})^K$.

Assume that for a solution $g \in S_{P'}(K)$ the image j(g) is in $l^q(r_\nu)^K$. Then for all points $y \in K$, except perhaps for a set of zero measure m, we have

$$(\sum_{\alpha \in \mathbb{N}_0^n} |\frac{D^{\alpha}g(y)}{\alpha!}|^q r_{\nu}^{q|\alpha|})^{1/q} < \infty.$$

Since the measure m is supposed to be massive, this inequality holds for a set σ_g of points $y \in K$ which is dense in K. So

$$\limsup_{|\alpha| \to \infty} |\frac{D^{\alpha}g(y)}{\alpha!}|^{1/|\alpha|} \leq \frac{1}{r_{\nu}} \ \text{ for all } y \in \sigma_g.$$

We shall construct a complex neighborhood U_{ν} of K into which all the elements of $j^{-1}(l^q(r_{\nu})^K)$ have (single valued) holomorphic extensions. This is the only place where we use the local connectedness of K.

For each $y \in K$ choose a neighborhood O_y in \mathbb{C}^n such that $O_y \subset \Delta(y, r_\nu)$ and such that $K \cap O_y$ is connected. This is possible, since K is assumed to be locally connected. Here $\Delta(y,r) = \{z \in \mathbb{C}^n : |z_i - y_i| < r \ (i = 1, \ldots, n)\}$ is the polydisk in \mathbb{C}^n with center y and radius r. Choose r_y such that $\Delta(y, 2r_y) \subset O_y$. Define $U_\nu = \bigcup_{y \in K} \Delta(y, r_y)$. Then U_ν is a neighborhood of K in \mathbb{C}^n .

Let $g \in j^{-1}(l^q(r_{\nu})^K)$ and $z \in U_{\nu}$. Define $\tilde{g}(z) = \sum_{\alpha} \frac{D^{\alpha}g(y)}{\alpha!}(z-y)^{\alpha}$ where y is any point of σ_g such that $z \in \Delta(y, r_y)$. The series converges, since $|z_i - y_i| < \frac{1}{2r_{\nu}}$ for all $i = 1, \ldots, n$. We have to show that $\tilde{g}(z)$ does not depend on y.

Suppose that $z \in \Delta(y', r_{y'}) \cap \Delta(y'', r_{y''})$, where $y', y'' \in \sigma_g$. Let $r_{y''} \leq r_{y'}$. Then $|y_i'' - y_i'| < r_{y'} + r_{y'} \leq 2r_{y'}$ for all $i = 1, \ldots, n$; hence $y'' \in \Delta(y', 2r_{y'}) \subset O_{y'}$. We conclude that both y' and y'' belong to the connected set $K \cap O_{y'}$. Let U be an open set in \mathbb{C}^n containing K, into which g has a (single valued) holomorphic extension. Then $K \cap O_{y'} \subset U \cap \Delta(y', r_{\nu})$, and we denote by O the component of the set on the right which contains y'. Obviously, y'' is in O, too. The equation $g(z) = \sum_{\alpha} \frac{D^{\alpha}g(y')}{\alpha!} (z - y')^{\alpha}$ is valid for all $z \in O$. Hence the series

$$\tilde{g}(z) = \sum_{\alpha} \frac{D^{\alpha} g(y'')}{\alpha!} (z - y'')^{\alpha}$$
 about y''

is a rearrangement of the series

$$g(z) = \sum_{\alpha} \frac{D^{\alpha}g(y')}{\alpha!} (z - y)^{\alpha}$$
 about y' ,

and uniqueness of $\tilde{g}(z)$ follows.

It is obvious that \tilde{g} is holomorphic in U_{ν} . Moreover, it is easily verified that \tilde{g} and g agree on $U_{\nu} \cap U$. We may assume that the coefficients of the differential operator P have holomorphic extensions to U_{ν} . Then $P'\tilde{g} \equiv 0$ in U_{ν} , since the function $P'\tilde{g}$ is holomorphic in U_{ν} and vanishes on an open subset of each component of U_{ν} .

Thus every solution $g \in j^{-1}(l^q(r_{\nu})^K)$ has a (single valued) extension to the complex neighborhood U_{ν} of K. Now, let $\{\eta^{(j)}\}$ be a sequence in $S_{P'}^{(q)} \cap l^q(r_{\nu})^K$ which converges to an element $\eta = \{\eta_{\alpha}\}$ in $l^q(r_{\nu})^K$. We would like to prove that η is in $S_{P'}^{(q)} \cap l^q(r_{\nu})^K$, too. By definition of $S_{P'}^{(q)}$, for every $j = 1, 2, \ldots$ there is a $g_j \in S_{P'}(K)$ such that $\eta_{\alpha}^{(j)} = \frac{D^{\alpha}g_j}{\alpha!}|_{K}$ ($\alpha \in \mathbb{N}_0^n$). Moreover, as was already proved, each element g_j is represented by a holomorphic function $g_j(z)$ in the complex neighborhood U_{ν} of K satisfying $P'g_j = 0$ there.

The convergence $\eta^{(j)} \to \eta$ in $l^p(r_{\nu})^K$ means that

$$\lim_{j\to\infty} (\int_K \sum_{\alpha\in\mathbb{N}_0^n} r_\nu^{q|\alpha|} |\frac{D^\alpha g_j(y)}{\alpha!} - \eta_\alpha(y)|^q dm(y))^{1/q} = 0.$$

Hence it follows that there exists a subsequence $\{g_{j_s}\}$ such that for all points $y \in K$, except for a set of zero measure m, we have

(5)
$$\lim_{j_s \to \infty} \left(\sum_{\alpha \in \mathbb{N}_n^n} r_{\nu}^{q|\alpha|} \left| \frac{D^{\alpha} g_{j_s}(y)}{\alpha!} - \eta_{\alpha}(y) \right|^q \right)^{1/q} = 0.$$

Since the measure m is massive, equality holds for a set σ of points $y \in K$ which is dense in K. We now use compactness of K to conclude the following. There are a finite number of points $y^{(1)}, \ldots, y^{(n)}$ in σ and a positive $r < r_{\nu}$ such that K is contained in the union $U = \Delta(y^{(1)}, r) \cup \ldots \cup \Delta(y^{(n)}, r)$, and $\overline{U} \subset U_{\nu}$. Our purpose is to show that the sequence $\{g_{j_s}\}$ converges to some function g in $S_{P'}(U)$. Since the space $S_{P'}(U)$ is complete, it suffices to prove that this sequence is a Cauchy sequence in $S_{P'}(U)$, i.e., in each of the spaces C(k), where k is a compact subset of U. Obviously, we may restrict ourselves to compact sets k lying in one of the polydisks $\Delta(y^{(1)}, r), \ldots, \Delta(y^{(n)}, r)$.

Let k be a compact subset of $\Delta(y,r)$ where $\Delta(y,r)$ is one of the polydisks previously mentioned. Denote by d the distance from k to the n-skeleton of $\Delta(y,r)$, i.e., $\partial_n \Delta(y,r) = \{ \zeta \in \mathbb{C}^n : |\zeta_i - y_i| = r \ (i = 1, ..., n) \}$. The distance is taken in the polydisk-norm.

We may regard some branch of $(g_{j_s}(z)-g_{j_t}(z))^q$ in $\Delta(y,r)$ to yield a holomorphic function there. By Cauchy's Theorem we have for all $z \in \Delta(y,r)$:

(6)

$$(g_{j_s}(z) - g_{j_t}(z))^q = \frac{1}{(2\pi\sqrt{-1})^n} \int_{\partial_n \Delta(y,r)} \frac{(g_{j_s}(\zeta) - g_{j_t}(\zeta))^q}{(\zeta_1 - z_1) \cdot \dots \cdot (\zeta_n - z_n)} d\zeta_1 \wedge \dots \wedge d\zeta_n.$$

The Taylor-series expansion for $(g_{j_s}(\zeta) - g_{j_t}(\zeta))$, centered at y, converges uniformly in the closure of $\Delta(y, r)$. So (6) implies for $z \in k$:

$$|g_{j_s}(z) - g_{j_t}(z)| \le \left(\frac{1}{(2\pi d)^n \int_{\partial_n \Delta(y,r)} |g_{j_s}(\zeta) - g_{j_t}(\zeta)|^q |d\zeta_1| \wedge \ldots \wedge |d\zeta_n|}\right)^{1/q}$$

$$= \left(\frac{1}{(2\pi d)^n} \int_{\partial_n \Delta(y,r)} |\sum_{\alpha \in \mathbb{N}_0^n} \frac{D^{\alpha}(g_{j_s}(y) - g_{j_t}(y))}{\alpha!} (\zeta - y)^{\alpha}|^q |d\zeta_1| \wedge \ldots \wedge |d\zeta_n|\right)^{1/q}.$$

Using Hölder's inequality and taking into account that $r < r_{\nu}$, we get

$$\sup_{z \in k} |g_{j_{s}}(z) - g_{j_{t}}(z)| \\
\leq \left(\frac{1}{(2\pi d)^{n}} \int_{\partial_{n}\Delta(y,r)} \left(\sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{|(\zeta - y)^{\alpha}|^{p}}{|r_{\nu}^{|\alpha|}|^{p}}\right)^{(q/p)} |d\zeta_{1}| \wedge \ldots \wedge |d\zeta_{n}|\right)^{1/q} \\
\cdot \left(\sum_{\alpha \in \mathbb{N}_{0}^{n}} \left|\frac{D^{\alpha}(g_{j_{s}}(y) - g_{j_{t}}(y))}{\alpha!} r_{\nu}^{|\alpha|}|^{q}\right)^{1/q} \\
= \left(\frac{r}{d}\right)^{n/q} \left(\sum_{\alpha} \left(\frac{r}{r_{\nu}}\right)^{p|\alpha|}\right)^{1/p} \left(\sum_{\alpha} \left|\frac{D^{\alpha}g_{j_{s}}(y) - D^{\alpha}g_{j_{t}}(y)}{\alpha!}\right|^{q} r_{\nu}^{q|\alpha|}\right)^{1/q} \\
\leq \left(\frac{r}{d}\right)^{n/q} \left(\frac{r_{\nu}^{p}}{r_{\nu}^{p} - r^{p}}\right)^{n/p} \left\{\left(\sum_{\alpha} r_{\nu}^{|\alpha|q} \left|\frac{D^{\alpha}g_{j_{s}}(y)}{\alpha!} - \eta_{\alpha}(y)\right|^{q}\right)^{\frac{1}{q}} + \\
+ \left(\sum_{\alpha} r_{\nu}^{|\alpha|q} \left|\frac{D^{\alpha}g_{j_{t}}(y)}{\alpha!} - \eta_{\alpha}(y)\right|^{q}\right)^{\frac{1}{q}} \right\}.$$

By (5) it follows that $\sup_{z \in k} |g_{j_s}(z) - g_{j_t}(z)| \to 0$ when both j_s and j_t tend to infinity. This is just what we wanted to prove. Thus, there is a solution $g \in S_{P'}(U)$ such that $g_{j_s} \to g$ in $S_{P'}(U)$. Because of Lemma 2.3, we obtain $\eta = j(g)$. Hence $\eta \in S_{P'}^{(q)}$, as was to be proved.

The main result of this section consists of the following.

Theorem 2.1. Assume that K is a locally connected compact subset of X, and q > 1. Then the mapping $j^{-1}: S_{P'}^{(q)} \to S_{P'}(K)$ is continuous.

Proof. The assertion follows from Lemma 2.4 and a version of the Open Mapping Theorem, but we prefer the direct proof. As was already mentioned, the mapping $j^{-1}: S_{P'}^{(q)} \to S_{P'}(K)$ is continuous, iff each restriction $j^{-1}: S_{P'}^{(q)} \cap l^q(r_{\nu})^K$ is continuous (see Bourbaki [3]). Let $\{g_j\}$ be a sequence of $S_{P'}(K)$ such that the sequence $\{\frac{D^{\alpha}g_j}{\alpha!}\}_{\alpha\in\mathbb{N}_0^n}$ converges to zero in $l^q(r_{\nu})^K$. By the same way as we proceeded in the proof of Lemma 2.4, we find a complex neighborhood U_{ν} of K such that every element g_j is represented by a holomorphic function $g_j(z)$ in U_{ν} satisfying $P'g_j=0$ there.

Choose a positive $r < r_{\nu}$ such that the set $U = \bigcup_{y \in K} \Delta(y, r)$ is contained in U_{ν} together with its closure. Then we claim that $\{g_j\}$ tends to zero uniformly on compact subsets of U. In fact, otherwise there would exist a compact set $k \subset U$, an $\varepsilon > 0$ and a subsequence $\{g_{j_s}\}$ such that $\sup_{z \in k} |g_{j_s}(z)| \ge \varepsilon$ for all j_s . But then it follows just in the same way as in the proof of Lemma 2.4 that some subsequence of $\{g_{j_s}\}$ should tend to zero uniformly on compact subsets of U. This contradiction implies our statement. Hence $g_j \to 0$ in $S_{P'}(K)$, as was to be proved.

Combining Theorem 2.1 and Lemma 2.3, we obtain the

Corollary 2.2. Under the conditions of Theorem 2.1, the mapping $j: S_{P'}(K) \to S_{P'}^{(q)}$ is a topological isomorphism of the space $(S_{P'}(K), \tau)$ onto the space $S_{P'}^{(q)}$ equipped with the topology induced by $L^{(q)}$.

3. Proof of the main Lemma and Remarks

3.1. In order to prove Lemma 1.2, we shall use the fact that each solution $f \in S_P(X \setminus K)$ may be written as the sum of a solution in $S_P(X)$ and a solution in $S_P(X \setminus K)$ which is regular at infinity. The latter notion can be introduced as follows:

Denote by \hat{X} the one point compactification of X, i.e., the union of X and the symbolic point ∞ . The topology in \hat{X} is defined by the following system of neighborhoods: If $x \in X$, then we take the usual neighborhood basis, and if $x = \infty$, then we take the family of complements of all compact subsets in X. Let U be a neighbourhood of ∞ . A function $f \in S_P(U)$ which has the representation (in a neighborhood of ∞ , possibly smaller than U) $f = \Phi(F)$, for some distribution F with compact support, in K, is called regular at infinity. Here $\Phi(F)$ is the value of the pseudo-differential operator Φ on F. For smooth functions F with compact support $\Phi(F)$ is defined by $\Phi(F) = \int_{\mathbb{R}^n} \Phi(\cdot, y) F(y) dy$. For distributions F with compact support, $\Phi(F)$ is defined by duality.

Of course, this notion depends on our particular choice of the fundamental solution Φ , while the space of solutions regular at infinity does not depend on Φ on the whole.

Let us denote by $S_P^{(r)}(X\backslash K)$ the subspace of $S_P(X\backslash K)$ consisting of the solutions regular at infinity.

Lemma 3.1. For each compact set $K \subset X$, it follows that

$$S_P(X \setminus K) = S_P(X) \oplus S_P^{(r)}(X \setminus K).$$

The sum on the right is topological.

Proof. Let G_P be a Green operator for P, i.e., a bidifferential operator of order $\operatorname{ord}(P)-1$ on X with the property that $dG_P(g,f)=(\langle g,Pf\rangle_x-\langle P'g,f\rangle_x)\,dx$ for all g and f, which are smooth enough in X. Here $dx=dx_1\wedge\ldots\wedge dx_n$. Given a solution $f\in S_P(X\setminus K)$, we define the functions f_e and f_r in the following way. Let $x\in X$. Choose an open set $U\subset\subset X$ with piecewise smooth boundary such that $K\subset U$ and $x\in U$. Set $f_e(x)=-\int_{\partial U}G_P(\Phi(x,\cdot),f)$. It follows from the Green formula that $f_e(x)$ does not depend on the particular choice of U. Obviously, $f_e\in S_P(X)$. Now let $x\in X\setminus K$. Let $U\subset\subset X$ be an open set with piecewise smooth boundary such that $K\subset U$ and $x\notin \overline{U}$. Set $f_r(x)=\int_{\partial U}G_P(\Phi(x,\cdot),f)$. Again, f_r does not depend on the choice of U. It is clear that $f_r\in S_P^{(r)}(X\setminus K)$. By the Green formula we get $f=f_e+f_r$. The rest of the proof is obvious.

Thus, every solution $f \in S_P(X \setminus K)$ may be written in the form $f = f_e + f_r$, with $f_e \in S_P(X)$ and $f_r \in S_P^{(r)}(X \setminus K)$, and this representation is unique.

3.2. Given a solution $f \in S_P(X \setminus K)$, we define a linear functional F_f on $S_{P'}(K)$ as follows. Let $g \in S_{P'}(K)$. This means that there is a neighborhood U of K such that $g \in S_{P'}(U)$. Choose a new neighborhood U_g of K such that $U_g \subset U$ and the boundary of U_g is piecewise smooth. Put

(1)
$$\langle F_f, g \rangle = \int_{\partial U_g} G_P(g, f) \ (g \in S_{P'}(K)).$$

It follows from the Green formula, that the value $\langle F_f, g \rangle$ does not depend on the particular choice of U_q . Moreover, F_f is a continuous linear functional on $S_{P'}(K)$.

Lemma 3.2. If $f \in S_P(X \setminus K)$, then

(2)
$$\langle F_f, \Phi(x, \cdot) \rangle = f_r(x) \text{ for } x \in X \setminus K.$$

Proof. In fact, if $x \in X \setminus K$, then $\Phi(x, \cdot)$ satisfies $P'\Phi(x, \cdot) = 0$ in the neighborhood $X \setminus \{x\}$ of K. So the left-hand side of (2) is well-defined. To finish the proof, it only remains to look at the proof of Lemma 3.1.

3.3. We proceed now by applying Theorem 2.1. Therefore, we are interested in a representation of functionals $F \in (L^{(q)})'$, where $1 < q < \infty$.

Lemma 3.3. Let $1 < q < \infty$ and p be the conjugate exponent to q. To each continuous linear functional F on $(L^{(q)})$ there is a sequence $f = \{f_{\alpha}\}_{{\alpha} \in \mathbb{N}_0^n}$ in $L^p(K,m)$ such that $\|f_{\alpha}\|_{L^p(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$, such that

$$\langle F, \eta \rangle = \sum_{\alpha \in \mathbb{N}_0^n} \int_K \langle f_{\alpha}(y), \eta_{\alpha}(y) \rangle dm(y) \text{ for all } \eta = \{ \eta_{\alpha} \} \in L^{(q)}.$$

Proof. Let $\eta \in l^q(r_\nu)^K$. Then $\eta = \sum_{\alpha \in \mathbb{N}_0^n} \eta_\alpha e_\alpha$, and the series converges with respect to the norm of $l^q(r_\nu)^K$. Since F is a continuous functional on $L^{(q)}$, its restriction to each of the $l^q(r_\nu)^K$ is continuous, too. Therefore, we have $\langle F, \eta \rangle = \sum_\alpha \langle F, \eta_\alpha e_\alpha \rangle$ for all $\eta = \{\eta_\alpha\} \in L^{(q)}$. For a fixed multi-index α , we consider the linear functional on $L^q(K,m)$ defined by $g \longmapsto \langle F, ge_\alpha \rangle \quad (g \in L^q(K,m))$. This functional is obviously continuous, so by duality there is a function $f_\alpha \in L^p(K,m)$ such that $\langle F, ge_\alpha \rangle = \int_K \langle f_\alpha(y), g(y) \rangle dm(y)$ for all $g \in L^q(k,m)$. Hence $\langle F, \eta \rangle = \sum_\alpha \int_K \langle f_\alpha(y), \eta_\alpha(y) \rangle dm(y)$ for all $\eta \in L^{(q)}$. The expression on the right hand side of this equality is a continuous linear functional on $L^{(q)}$, and thus on each of the

spaces $l^q(r_{\nu})^K$. Hence it follows by Lemma 2.2 that $\{f_{\alpha}\} \in l^p(\frac{1}{r_{\nu}})^K$ for every ν . Then $\sum_{\alpha} (\|f_{\alpha}\|_{L^p(K,m)}^{1/|\alpha|} \frac{1}{r_{\nu}})^{p|\alpha|} < \infty$, showing that $\limsup_{|\alpha| \to \infty} \|f_{\alpha}\|_{L^p(K,m)}^{1/|\alpha|} \le r_{\nu}$ for all ν . Since $r_{\nu} \to \infty$, the assertion follows.

3.4. We now turn to the

Proof (of Lemma 1.2). Assume that $f \in S_P(X \setminus K)$. We consider the continuous linear functional F_f on $S_{P'}(K)$ given by formula (1). The composition $F = F_f \circ j^{-1}$ defines a linear functional on the space $S_{P'}^{(q)}$, as follows from Lemma 2.3. Because of Theorem 2.1, the functional F is continuous. By the Hahn-Banach Theorem, F can be continuously extended to the whole space $L^{(q)}$. According to Lemma 3.3, there exists a sequence $\{f_\alpha\}_{\alpha\in\mathbb{N}_0^n}$ in $L^p(K,m)$, satisfying $\|f_\alpha\|_{L^p(K,m)}^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$, such that

$$\langle F, j(g) \rangle = \sum_{\alpha} \int_{K} \langle f_{\alpha}(y), \frac{D^{\alpha}g(y)}{\alpha!} \rangle dm(y) \text{ for all } g \in S_{P'}(K).$$

Now putting $g = \Phi(x, \cdot)$, where x is a fixed point of $X \setminus K$, and using Lemma 3.2 we derive the assertion of Lemma 1.2 with $c_{\alpha} = f_{\alpha}/\alpha!$ $(\alpha \in \mathbb{N}_{0}^{n})$, since

$$\langle F, j(\Phi(x,\cdot)) \rangle = \langle F_f, \Phi(x,\cdot) \rangle = f_r(x) = f(x) - f_e(x).$$

3.5. When K is a single point, the representation asserted by Lemma 1.2 is just the Laurent expansion of f.

Corollary 3.1. Let y_0 be a fixed point of X. Then for every solution $f \in S_P(X \setminus \{y_0\})$ there exist a solution $f_e \in S_P(X)$ and a sequence $\{c_\alpha\}_{\alpha \in \mathbb{N}_0^n} \subset \mathbb{C}^k$, satisfying $|\alpha| c_\alpha |^{1/|\alpha|} \to 0$ when $|\alpha| \to \infty$, such that

(3)
$$f(x) = f_e(x) + \sum_{\alpha} D_y^{\alpha} \Phi(x, y_0) c_{\alpha} \quad (x \in X \setminus \{y_0\}).$$

Proof. The assertion follows by using $m(y_0) = 1$ as a massive measure on $K = \{y_0\}$.

The coefficients $\{c_{\alpha}\}$ will not be uniquely determined by f, since

$$P'(y_0, D_y)\Phi(x, y_0) = \delta(x - y_0)I_k$$

becomes zero off y_0 .

The Laurent-series expansions for solutions of general elliptic equations were first studied by Lopatinskii [10] .

3.6. If $O \subset\subset X$ is an open set whose boundary is locally connected, then each solution f of Pf=0 in O has a representation (1) for $x\in O$ with $K=\partial O$. The only thing we have to do is to construct a massive measure m on ∂O , and to extend f to a function satisfying the equation in the complement of ∂O . The assertion follows by Lemma 1.2.

3.7. Theorem 1.1 implies that arbitrary singularities of solutions of elliptic equations may be locally separated into atomic (i.e. one-point) singularities.

Corollary 3.2. Assume that K is a locally connected compact subset of σ , and $\{y_{\nu}\}$ is a dense sequence of points of K. Then every solution $f \in S_{P}(X \setminus \sigma)$ can be written in the form $f = f_{e} + \sum_{\nu} f_{\nu}$, where $f_{e} \in S_{P}((X \setminus \sigma) \cup \overset{\circ}{K})$ and $f_{\nu} \in S_{P}(X \setminus \{y_{\nu}\})$, and the series converges in the topology of $S_{P}(X \setminus K)$.

Proof. We use the massive measure m on K constructed in Example 1.1. By Theorem 1.1

$$f(x) = f_e(x) + \sum_{\alpha} (\sum_{\nu} D_y^{\alpha} \Phi(x, y_{\nu}) c_{\alpha}(y_{\nu}) \mu_{\nu}) \text{ for } x \in X \setminus \sigma,$$

where $f_e \in S_P((X \setminus \sigma) \cup \overset{\circ}{K})$ and $\lim_{|\alpha| \to \infty} (\sum_{\nu} |\alpha! c_{\alpha}(y_{\nu})|^p \mu_{\nu})^{1/(p|\alpha|)} = 0$. The last condition allows to rearrange the summations and to derive $f = f_e + \sum_{\nu} f_{\nu}$ with

$$f_{\nu} = \sum_{\alpha} D_y^{\alpha} \Phi(x, y_{\nu}) c_{\alpha}(y_{\nu}) \mu_{\nu},$$

as was to be proved.

3.8. For the Laplace operator we obtain the following result (which seems to be new).

Corollary 3.3. Let $K \subset \sigma$ be a locally connected compact set, and 1 . Then every harmonic function <math>f in $X \setminus \sigma$ has the form

$$f(x) = f_e(x) + \sum_{j=0}^{\infty} \int_K \frac{h_j(y, x - y)}{|x - y|^{n+2(j-1)}} dm(y) \quad (x \in X \setminus \sigma)$$

where f_e is a harmonic function in $(X \setminus \sigma) \cup \overset{\circ}{K}$, and $h_j(y,z)$ are homogeneous harmonic polynomials of degree j in z with coefficients in $L^p(K,m)$ with respect to y, such that $\lim_{j\to\infty} (\frac{1}{j!} \int_K |h_j(y,D_z)h_j(y,z)|^{p/2} dm(y))^{1/p_j} = 0$.

Proof. It suffices to transform formula (1) by means of the Hecke identity (cf. Stein [14]).

3.9. We finish this section by mentioning one more aspect of Theorem 1.1. It is a natural question to ask whether a given solution $f \in S_P(X \setminus \{y_0\})$ admits a representation (3) with a finite number of summands. This is obviously the case iff f has a finite order of growth near y_0 , i.e., $|f(x)| \le c|x - y_0|^{-\gamma}$ in some deleted neighborhood of y_0 . In other words, y_0 has to be a pole of f. Therefore, the solutions $f \in S_P(X \setminus K)$ for which the expansions (1) have only a finite number of terms are analogues of solutions with poles in general. Such solutions can be characterized as follows.

Theorem 3.1. Let K be an arbitrary compact set in X, m be a massive measure on K, and $1 . A solution <math>f \in S_P(X \setminus K)$ has a representation (1) with a finite number of terms iff the functional F_f given by (1) is continuous on $S_{P'}(K)$ with respect to the topology defined by the family of seminorms $\|D^{\alpha}g\|_{L^q(K,m)}$ ($\alpha \in \mathbb{N}_0^n$).

Proof. See Tarkhanov [15].

References

- 1. Baernstein, A.: Representations of holomorphic functions by boundary integrals. *Trans. Amer. Math. Soc.* **160** (1971), 27-37. MR **44**:415
- Baernstein, A.: A representation theorem for functions holomorphic off the real axis. Trans. Amer. Math. Soc. 165 (1972), 159-165. MR 45:2190
- 3. Bourbaki, N.: Topological vector spaces. Springer-Verlag, Berlin, Heidelberg, New York, 1987. MR 88g:46002
- Fischer, B.; Tarkhanov, N.N.: A representation of solutions with singularities. Contemp. Math., vol. 212, Amer. Math. Soc., Providence, RI, 1998. CMP 98:05
- Gramsch, B.: Uber das Cauchy-Weil Integral für Gebiete mit beliebigem Rand. Arch. Math. (Basel) 28 (1977), 409-421. MR 58:17206
- Grothendieck, A.: Sur les espaces (F) and (DF). Summa Brasil. Math. 3 (1954), 57-123. MR 17:765b
- 7. Havin, V.P.: An analogue of the Laurent series, in: *Investigations in modern problems of the theory of functions of a complex variable*. Fizmatgiz, Moscow 1961, 121-131 (Russian).
- 8. Havin, V.P.: Golubev series and the analyticity on a continuum, in: *Linear and complex analysis problem book*. Springer Lecture Notes 1043. Springer-Verlag, Berlin, Heidelberg, New York 1984. MR **85k**:46007
- 9. Köthe, G.: Topologische lineare Räume I. Springer-Verlag, Berlin, Heidelberg, New York, 1960. MR **24**:A411
- Lopatinskii, Ya. B.: Behaviour of solutions of a linear elliptic system in a neighborhood of an isolated singular point. Dokl. Akad. Nauk SSSR 79 (1951) 5, 727-730 (Russian).
- Makarov, B.M.: Inductive limits of normed spaces. *Dokl. Akad. Nauk SSSR* 119 (1958) 6, 1092-1094 (Russian). MR 20:5412
- Rogers, J.T.; Zame, W.R.: Extension of analytic functions and the topology in spaces of analytic functions. *Indiana Univ. Math. J.* 31 (1982) 6, 809-818. MR 83k:30050
- 13. Simonova, S.: A representation theorem for functions harmonic off a hyperplane. Sibirsk. Mat. Zh. 34 (1993) (Russian).
- Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton 1970.
- Tarkhanov, N.N.: The structure of solutions of elliptic systems with a compact set of singularities. Izv. VUZ. Mat. 1989 no. 12, 47-56 (Russian). MR 91e:35090
- Tarkhanov, N.N.: Laurent series for solutions of elliptic systems. Nauka, Novosibirsk 1991 (Russian). MR 94e:35013
- Varfolomeev, A.L.: Analytic continuation from a continuum onto its neighborhood; in: Zap. Nauchni. Sem. Leningrad. Otdel. Mat. Inst. Stekl. (LOMI) 113 (1981), 27-40 (Russian). MR 83e:30003

MAX-PLANCK-ARBEITSGRUPPE, "PARTIELLE DIFFERENTIALGLEICHUNGEN UND KOMPLEXE ANALYSIS", UNIVERSITÄT POTSDAM, AM NEUEN PALAIS 10, D - 14415 POTSDAM, GERMANY E-mail address: christoph@mpg-ana.uni-potsdam.de

 $E ext{-}mail\ address: tarkhan@mpg-ana.uni-potsdam.de}$